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Problems and remarks

Roman Ger: An “old” problem
Given a function f : R→ R assume that the inequality

∆n+1h f(x)  0,

holds true for `2-almost all pairs (x, h) ∈ R × (0,∞). Does there exist a function
g : R→ R such that the inequality

∆n+1h g(x)  0,

is satisfied for all pairs (x, h) ∈ R× (0,∞) and

`1({x ∈ R : f(x) 6= g(x)}) = 0?

Here ∆ph stands for the p-th iterate of the difference operator ∆hϕ(x) := ϕ(x + h)−
ϕ(x), whereas `p denotes the p-dimensional Lebesgue measure, p ∈ N.

Roughly speaking, the question is whether almost n-convex function has to be
almost equal to an n-convex one.

M. Kuczma has shown in [2] that for Jensen convex functions (i.e. for n = 1) the
answer is positive. For polynomial functions, i.e. for solutions of the Fréchet functional
equation

∆n+1h f(x) = 0,

the answer to an analogous question is affirmative as well (an “old” result published
in [1]; see also [3]).

In a more general setting, the problem in question carries over to the case where
the real line R is replaced by an Abelian group and the σ-ideals of nullsets in R and
R2 are replaced by an abstract proper linearly invariant ideal (σ-ideal) I and the
ideal Ω(I), respectively (see [3] for detailed definitions).
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Włodzimierz Fechner: Which spaces are Hlawka spaces?
Hlawka’s inequality:

‖x+ y‖+ ‖y + z‖+ ‖x+ z‖ ¬ ‖x+ y + z‖+ ‖x‖+ ‖y‖+ ‖z‖ (1)

holds true in each inner product space. Therefore, it is true on the real line and,
consequently, on spaces `1 and L1([0, 1]).
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The following example shows that there exist normed linear spaces which are not
Hlawka spaces (i.e. in which inequality (1) is not valid). Let us consider the space R3
with the supremum norm and take x = (1, 1,−1), y = (1,−1, 1) and z = (−1, 1, 1).
Then

‖x+ y‖+ ‖y + z‖+ ‖x+ z‖ = 6

whereas
‖x+ y + z‖+ ‖z‖+ ‖y‖+ ‖z‖ = 4.

Modifying this example we can obtain something more: if x, y, z are the same as
before and the space R3 is equipped with the norm:

‖(t1, t2, t3)‖p = (|t1|p + |t2|p + |t3|p)
1
p

then Hlawka inequality (1) is violated for any p > log1.5 3 ≈ 2.7095.
L.M. Kelly, D.M. Smiley, M.F. Smiley [1] showed that each two-dimensional real

normed space is a Hlawka space. This result (which is elementary and easy to prove)
can be also deduced from a (by no means elementary) result of J. Lindenstrauss [2]
which states that each two-dimensional real normed linear space E is isomorphically
isometric to a subset of L1([0, 1]) (and therefore E is a Hlawka space). Further, using
some results from paper J. Lindenstrauss, A. Pełczyński [3] one can deduce that all
Banach spaces having the property that its all finite dimensional subspaces can be
embedded linearly and isometrically in the space Lp([0, 1]), with some 1 ¬ p ¬ 2 are
Hlawka spaces (see C.P. Niculescu, L.-E. Persson [6]). Further, H.S. Witsenhausen [7]
proved that a finite-dimensional real space with piecewise linear norm is embeddable
in L1 if and only if it is a Hlawka space. However, A. Neyman [5] showed that in
general case embeddability in L1 does not characterize Hlawka spaces.

In book of D.S. Mitrinović [4] the author wrote that (1) is valid on each real
normed space (clearly this is not true – see example above). For the proof he refers
the reader to [1] (with the proof of (1) in 2-dimensional case only). Several authors
refer to this erroneous fact (and they are using it!).

The problems I would like to draw your attention on are:

• for which p > 1 the spaces `p and Lp are Hlawka spaces?
• when arbitrary normed space is a Hlawka space?
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Tamas Glavosits
We say that an polygon is a regular polygon, if its sides are congruent with each other
and its angles are also congruent with each other. We use the abbreviation n-gon for
regular polygons with n-sides, where n is a positive integer. We say that a solid is
a Platonic solid, if it is a convex regular polyhedron with congruent regular faces.
There are only 5 Platonic solids, while the number of regular polygons is infinite.
The concept of Archimedean solid is a generalization of the concept of Platonic solid.
The Archimedean solids are semi-regular convex polyhedrons which are composed
two or more types of regular polygons meeting in identical vertices.

Problems with solutions

The following problem was presented at the conference Convexity & Applications
(Iwonicz Zdrój, Polska, September 5–10, 2010).

Problem 1 [The special problem in 2D]. Let T be an arbitrarily fixed equilateral triangle
and let S be an arbitrarily fixed square. We would like to find the plane-figure which
is the intersection of all the squares that contain T and the common center of which
is the same as the center of T , and we would like to find the plane-figure which is
the intersection of all the equilateral triangles that contain S and the common center
of which is the same as the center of S.

Solution 2 [By Wolfgang Förg-Rob]. In both of the cases investigated above we obtain
an equilateral 12-gon such that the vertices of the origin triangle (or square) can be
found among the vertices of this 12-gon.

Problem 3 [The general problem in 2D]. Let n,m be fixed positive integers such that
n,m  3. Take an arbitrarily fixed n-gon F . We want to know what the intersection
of all the m-gons that contain the fixed n-gon and the common center of these m-gons
is the same as the center of the original F .

Solution 4. The method applied by Wolfgang Förg-Rob can be used in this more
general situation. The intersection of all m-gons having the required properties an
lcm(m,n)-gon such that the vertices of the origin n-gon F can be found among the
vertices of this lcm(m,n)-gon.

Open problems

Problem 5. The two problems above (namely the special and the general problem in
2D) can be formulated in 3D such that in special problem we can use tetrahedron or
cube instead of equilateral triangle or square and in the general problem we can use
use Platonic solids or Archimedean solids (or any other type semi-symmetric convex
solids) instead of n-gons. These problems can be extended into higher dimensional
spaces.

Tomasz Szostok
A function f is called strongly midconvex (or Jensen convex) with modulus equal
to 1, if

f
(
x+ y

2

)
¬ f(x) + f(y)

2
− 1

4
|x− y|2. (1)

It can be easily proved (see [1]) that if f is midconvex, then it satisfies the inequality

f(tx+ (1− t)y) ¬ tf(x) + (1− t)f(y)− t(1− t)|x− y|2, (2)
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for all dyadic numbers t ∈ (0, 1). If additionally f is continuous, then this inequality
is satisfied for all t, i.e. f is strongly convex.

Inequality (1) may be generalized in the following way:

f
(
x+ y

2

)
¬ f(x) + f(y)

2
− 1

2p
|x− y|p. (3)

But then, the step leading to an inequality similar to (2) is less obvious. For example,
it can be shown that if f satisfies (3), then

f(tx+ (1− t)y) ¬ tf(x) + (1− t)f(y)− (t− tp)|x− y|p

for all t of the shape t = 1/2k. Thus, the problem is to find a function h(t) such that
every function satisfying (3) satisfies

f(tx+ (1− t)y) ¬ tf(x) + (1− t)f(y)− h(t)|x− y|p

for every dyadic number t ∈ (0, 1).
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Mateusz Jurczyński
The integral Hadamard inequality can be stated as follows:∣∣∣∣∫

Rn
|Df(x)|p−nJ(x, f)dx

∣∣∣∣ ¬ λ
∫
Rn
|Df(x)|pdx.

It is natural to ask what is the best λ such that this inequality holds true for given p,
n (and f ∈ C∞0 ). Through study of quasiconvex functions, Tadeusz Iwaniec proposed
the following conjecture.

Conjecture. The best constant λ in the integral Hadamard inequality for n < 2p is

λp(n) =
∣∣∣∣np − 1

∣∣∣∣.
It is still an open problem.
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